f(x)=
[tex] \sqrt[4]{8x {?}^{2} - 2x \: } \: maka f \: aksen \: (x)[/tex]
Jawaban:
Pembahasan
Turunan fungsi aljabar
Bentuk turunan fungsi pada umumnya ditulis sebagai berikut:
[tex] \tt \: f(x) = {ax}^{n} \to \: f'(x) = an {x}^{n - 1} \\ [/tex]
Penyelesaian soal
[tex] \tt \: f(x) = \sqrt[4]{8 {x}^{2} - 2x } [/tex]
Pada bentuk akar, ingat bahwa:
Jika [tex] \tt \sqrt[n]{ {a}^{m} } \: maka\: {a}^{ \frac{m}{n} } [/tex].
Sehingga:
[tex] \tt \: f(x) = (8 {x}^{2} - 2x) {}^{ \frac{1}{4} } \\ [/tex]
[tex] \tt \: f'(x) = \frac{1}{4} (8 {x}^{2} - 2x) {}^{ \frac{1}{4} - 1 } .(8(2) {x}^{2 - 1} - 2 {x}^{1 - 1} )[/tex]
[tex]\tt \: f'(x) = \frac{1}{4} (8 {x}^{2} - 2x) {}^{ - \frac{3}{4} } .(16x {}^{1} - 2 {x}^{0} )[/tex]
[tex]\tt \: f'(x) = \frac{1}{4} (8 {x}^{2} - 2x) {}^{ - \frac{3}{4} } .(16x - 2)[/tex]
[tex]\tt \: f'(x) = \frac{1}{4} (16x - 2).(8 {x}^{2} - 2x) {}^{ - \frac{3}{4} } [/tex]
[tex]\tt \: f'(x) = (4x - \frac{1}{2} ).(8 {x}^{2} - 2x) {}^{ - \frac{3}{4} } \\ [/tex]
[tex]\tt \: f'(x) = ( \frac{8x - 1}{2} ).(8 {x}^{2} - 2x) {}^{ - \frac{3}{4} } \\ [/tex]
[tex]\tt \: f'(x) = \frac{8x - 1}{2(8 {x}^{2} - 2x) {}^{ \frac{3}{4} } } \\ [/tex]
Kesimpulan
Jadi, turunan pertama dari [tex] \tt \: f(x) = \sqrt[4]{8 {x}^{2} - 2x } [/tex] adalah [tex] \tt \frac{8x - 1}{2(8 {x}^{2} - 2x) {}^{ \frac{3}{4} } } \\ [/tex].
[answer.2.content]